Assumptions:
TeX:
\theta_{2}\!\left(2 z , 2 \tau\right) = \frac{\theta_{1}\!\left(\frac{1}{4} - z , \tau\right) \theta_{1}\!\left(\frac{1}{4} + z , \tau\right)}{\theta_{4}\!\left(0 , 2 \tau\right)}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("f12569"),
Formula(Equal(JacobiTheta(2, Mul(2, z), Mul(2, tau)), Div(Mul(JacobiTheta(1, Sub(Div(1, 4), z), tau), JacobiTheta(1, Add(Div(1, 4), z), tau)), JacobiTheta(4, 0, Mul(2, tau))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))