Assumptions:
TeX:
j'(\tau) = -2 \pi i \frac{E_{14}\!\left(\tau\right)}{\eta^{24}\!\left(\tau\right)}
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| ModularJ | Modular j-invariant | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| EisensteinE | Normalized Eisenstein series | |
| Pow | Power | |
| DedekindEta | Dedekind eta function | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("f0f53b"),
Formula(Equal(ComplexDerivative(ModularJ(tau), For(tau, tau)), Mul(Neg(Mul(Mul(2, Pi), ConstI)), Div(EisensteinE(14, tau), Pow(DedekindEta(tau), 24))))),
Variables(tau),
Assumptions(And(Element(tau, HH))))