Assumptions:
TeX:
P_{n}\!\left(z\right) = \sum_{k=0}^{n} {n \choose k} {n + k \choose k} {\left(\frac{z - 1}{2}\right)}^{k}
n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LegendrePolynomial | Legendre polynomial | |
| Binomial | Binomial coefficient | |
| Pow | Power | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("f0569a"),
Formula(Equal(LegendrePolynomial(n, z), Sum(Mul(Mul(Binomial(n, k), Binomial(Add(n, k), k)), Pow(Div(Sub(z, 1), 2), k)), Tuple(k, 0, n)))),
Variables(n, z),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, CC))))