Assumptions:
TeX:
P_{n}\!\left(z\right) = \sum_{k=0}^{n} {n \choose k} {n + k \choose k} {\left(\frac{z - 1}{2}\right)}^{k} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LegendrePolynomial | Legendre polynomial | |
Sum | Sum | |
Binomial | Binomial coefficient | |
Pow | Power | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("f0569a"), Formula(Equal(LegendrePolynomial(n, z), Sum(Mul(Mul(Binomial(n, k), Binomial(Add(n, k), k)), Pow(Div(Sub(z, 1), 2), k)), For(k, 0, n)))), Variables(n, z), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, CC))))