Assumptions:
TeX:
\psi\!\left(n z\right) = \log(n) + \frac{1}{n} \sum_{k=0}^{n - 1} \psi\!\left(z + \frac{k}{n}\right) n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n z \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DigammaFunction | Digamma function | |
Log | Natural logarithm | |
Sum | Sum | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("eec21a"), Formula(Equal(DigammaFunction(Mul(n, z)), Add(Log(n), Mul(Div(1, n), Sum(DigammaFunction(Add(z, Div(k, n))), For(k, 0, Sub(n, 1))))))), Variables(n, z), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(z, CC), NotElement(Mul(n, z), ZZLessEqual(0)))))