Fungrim home page

Fungrim entry: edcf6c

RG ⁣(x,y,z)x+y+z3R_G\!\left(x, y, z\right) \ge \frac{\sqrt{x} + \sqrt{y} + \sqrt{z}}{3}
Assumptions:x[0,)  and  y[0,)  and  z[0,)x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left[0, \infty\right)
TeX:
R_G\!\left(x, y, z\right) \ge \frac{\sqrt{x} + \sqrt{y} + \sqrt{z}}{3}

x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left[0, \infty\right)
Definitions:
Fungrim symbol Notation Short description
CarlsonRGRG ⁣(x,y,z)R_G\!\left(x, y, z\right) Carlson symmetric elliptic integral of the second kind
Sqrtz\sqrt{z} Principal square root
ClosedOpenInterval[a,b)\left[a, b\right) Closed-open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("edcf6c"),
    Formula(GreaterEqual(CarlsonRG(x, y, z), Div(Add(Add(Sqrt(x), Sqrt(y)), Sqrt(z)), 3))),
    Variables(x, y, z),
    Assumptions(And(Element(x, ClosedOpenInterval(0, Infinity)), Element(y, ClosedOpenInterval(0, Infinity)), Element(z, ClosedOpenInterval(0, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC