Assumptions:
References:
- T. Apostol (1976), Introduction to Analytic Number Theory, Springer. Chapter 8.7.
TeX:
G^{\text{Primitive}}_{q} = \left\{ \chi : \chi \in G_{q} \;\mathbin{\operatorname{and}}\; \left[a \equiv 1 \pmod {d} \;\mathbin{\operatorname{and}}\; \gcd\!\left(a, q\right) = 1 \;\mathbin{\operatorname{and}}\; \chi(a) \ne 1 \;\text{ for some } a \in \{0, 1, \ldots, q - 1\} \;\text{ for all } d \in \{1, 2, \ldots, q - 1\} \text{ with } d \mid q\right] \right\} q \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
PrimitiveDirichletCharacters | Primitive Dirichlet characters with given modulus | |
DirichletGroup | Dirichlet characters with given modulus | |
GCD | Greatest common divisor | |
Range | Integers between given endpoints | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("ed65c8"), Formula(Equal(PrimitiveDirichletCharacters(q), Set(chi, For(chi), And(Element(chi, DirichletGroup(q)), Brackets(All(Exists(And(CongruentMod(a, 1, d), Equal(GCD(a, q), 1), NotEqual(chi(a), 1)), ForElement(a, Range(0, Sub(q, 1)))), ForElement(d, Range(1, Sub(q, 1))), Divides(d, q))))))), Variables(q), Assumptions(Element(q, ZZGreaterEqual(1))), References("T. Apostol (1976), Introduction to Analytic Number Theory, Springer. Chapter 8.7."))