Fungrim home page

Fungrim entry: ed65c8

GqPrimitive={χ:χGq  and  [a1(modd)  and  gcd ⁣(a,q)=1  and  χ(a)1   for some a{0,1,,q1}   for all d{1,2,,q1} with dq]}G^{\text{Primitive}}_{q} = \left\{ \chi : \chi \in G_{q} \;\mathbin{\operatorname{and}}\; \left[a \equiv 1 \pmod {d} \;\mathbin{\operatorname{and}}\; \gcd\!\left(a, q\right) = 1 \;\mathbin{\operatorname{and}}\; \chi(a) \ne 1 \;\text{ for some } a \in \{0, 1, \ldots, q - 1\} \;\text{ for all } d \in \{1, 2, \ldots, q - 1\} \text{ with } d \mid q\right] \right\}
Assumptions:qZ1q \in \mathbb{Z}_{\ge 1}
References:
  • T. Apostol (1976), Introduction to Analytic Number Theory, Springer. Chapter 8.7.
TeX:
G^{\text{Primitive}}_{q} = \left\{ \chi : \chi \in G_{q} \;\mathbin{\operatorname{and}}\; \left[a \equiv 1 \pmod {d} \;\mathbin{\operatorname{and}}\; \gcd\!\left(a, q\right) = 1 \;\mathbin{\operatorname{and}}\; \chi(a) \ne 1 \;\text{ for some } a \in \{0, 1, \ldots, q - 1\} \;\text{ for all } d \in \{1, 2, \ldots, q - 1\} \text{ with } d \mid q\right] \right\}

q \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol Notation Short description
PrimitiveDirichletCharactersGqPrimitiveG^{\text{Primitive}}_{q} Primitive Dirichlet characters with given modulus
DirichletGroupGqG_{q} Dirichlet characters with given modulus
GCDgcd ⁣(a,b)\gcd\!\left(a, b\right) Greatest common divisor
Range{a,a+1,,b}\{a, a + 1, \ldots, b\} Integers between given endpoints
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("ed65c8"),
    Formula(Equal(PrimitiveDirichletCharacters(q), Set(chi, For(chi), And(Element(chi, DirichletGroup(q)), Brackets(All(Exists(And(CongruentMod(a, 1, d), Equal(GCD(a, q), 1), NotEqual(chi(a), 1)), ForElement(a, Range(0, Sub(q, 1)))), ForElement(d, Range(1, Sub(q, 1))), Divides(d, q))))))),
    Variables(q),
    Assumptions(Element(q, ZZGreaterEqual(1))),
    References("T. Apostol (1976), Introduction to Analytic Number Theory, Springer. Chapter 8.7."))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC