Assumptions:
TeX:
T_{m}\!\left(x\right) T_{n}\!\left(x\right) = \frac{T_{m + n}\!\left(x\right) + T_{\left|m - n\right|}\!\left(x\right)}{2}
m \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ChebyshevT | Chebyshev polynomial of the first kind | |
| Abs | Absolute value | |
| ZZ | Integers | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("ed5222"),
Formula(Equal(Mul(ChebyshevT(m, x), ChebyshevT(n, x)), Div(Add(ChebyshevT(Add(m, n), x), ChebyshevT(Abs(Sub(m, n)), x)), 2))),
Variables(m, n, x),
Assumptions(And(Element(m, ZZ), Element(n, ZZ), Element(x, CC))))