Assumptions:
TeX:
T_{m}\!\left(x\right) T_{n}\!\left(x\right) = \frac{T_{m + n}\!\left(x\right) + T_{\left|m - n\right|}\!\left(x\right)}{2} m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Chebyshev polynomial of the first kind | |
Abs | Absolute value | |
ZZ | Integers | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("ed5222"), Formula(Equal(Mul(ChebyshevT(m, x), ChebyshevT(n, x)), Div(Add(ChebyshevT(Add(m, n), x), ChebyshevT(Abs(Sub(m, n)), x)), 2))), Variables(m, n, x), Assumptions(And(Element(m, ZZ), Element(n, ZZ), Element(x, CC))))