Assumptions:
TeX:
\theta_{1}\!\left(z , \tau\right) = \sum_{n=-\infty}^{\infty} {e}^{\pi i \left({\left(n + 1 / 2\right)}^{2} \tau + \left(2 n + 1\right) z + n - 1 / 2\right)} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Sum | Sum | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("ed4ce5"), Formula(Equal(JacobiTheta(1, z, tau), Sum(Exp(Mul(Mul(Pi, ConstI), Sub(Add(Add(Mul(Pow(Add(n, Div(1, 2)), 2), tau), Mul(Add(Mul(2, n), 1), z)), n), Div(1, 2)))), For(n, Neg(Infinity), Infinity)))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))