Assumptions:
TeX:
\theta_{3}\!\left(2 z , \tau\right) = \frac{\theta_{2}^{4}\!\left(z, \tau\right) + \theta_{4}^{4}\!\left(z, \tau\right)}{\theta_{3}^{3}\!\left(0, \tau\right)} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Pow | Power | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("ed3ff9"), Formula(Equal(JacobiTheta(3, Mul(2, z), tau), Div(Add(Pow(JacobiTheta(2, z, tau), 4), Pow(JacobiTheta(4, z, tau), 4)), Pow(JacobiTheta(3, 0, tau), 3)))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))