The principal branch of the natural logarithm
is a function of one complex variable .
It has a branch point singularity at
and a branch cut on
where the value on
is taken to be continuous with the upper half plane.
The following table lists all conditions such that Log(z) is defined in Fungrim.
|
Table data:
such that
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Log | Natural logarithm | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
OpenInterval | Open interval | |
RR | Real numbers | |
CC | Complex numbers | |
FormalPowerSeries | Formal power series | |
Rational numbers |
Source code for this entry:
Entry(ID("ed210c"), SymbolDefinition(Log, Log(z), "Natural logarithm"), Description("The principal branch of the natural logarithm", Log(z), "is a function of one complex variable", z, "."), Description("It has a branch point singularity at", Equal(z, 0), "and a branch cut on", OpenClosedInterval(Neg(Infinity), 0), "where the value on", OpenInterval(Neg(Infinity), 0), "is taken to be continuous with the upper half plane."), Description("The following table lists all conditions such that", SourceForm(Log(z)), "is defined in Fungrim."), Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(TableSection("Numbers"), Tuple(Element(z, Set(1)), Element(Log(z), Set(0))), Tuple(Element(z, OpenInterval(0, Infinity)), Element(Log(z), RR)), Tuple(Element(z, SetMinus(CC, Set(0))), Element(Log(z), CC)), TableSection("Infinities"), Tuple(Element(z, Set(Infinity)), Element(Log(z), Set(Infinity))), TableSection("Formal power series"), Tuple(And(Element(z, FormalPowerSeries(QQ, x)), Equal(SeriesCoefficient(z, x, 0), 1)), And(Element(Log(z), FormalPowerSeries(QQ, x)), Equal(SeriesCoefficient(Log(z), x, 0), 0))), Tuple(And(Element(z, FormalPowerSeries(RR, x)), Element(SeriesCoefficient(z, x, 0), OpenInterval(0, Infinity))), And(Element(Log(z), FormalPowerSeries(RR, x)))), Tuple(And(Element(z, FormalPowerSeries(CC, x)), Unequal(SeriesCoefficient(z, x, 0), 0)), And(Element(Log(z), FormalPowerSeries(CC, x)))))))