Assumptions:
TeX:
\theta''_{j}\!\left(z , \tau\right) - 4 \pi i \frac{d}{d \tau}\, \theta_{j}\!\left(z , \tau\right) = 0
j \in \left\{1, 2, 3, 4\right\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| ComplexDerivative | Complex derivative | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("ebc673"),
Formula(Equal(Sub(JacobiTheta(j, z, tau, 2), Mul(Mul(Mul(4, Pi), ConstI), ComplexDerivative(JacobiTheta(j, z, tau), For(tau, tau)))), 0)),
Variables(j, z, tau),
Assumptions(And(Element(j, Set(1, 2, 3, 4)), Element(z, CC), Element(tau, HH))))