Assumptions:
TeX:
\zeta\!\left(s, a\right) = \frac{1}{{2}^{s}} \left(\zeta\!\left(s, \frac{a}{2}\right) + \zeta\!\left(s, \frac{a + 1}{2}\right)\right) s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; s \ne 1 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
HurwitzZeta | Hurwitz zeta function | |
Pow | Power | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("ebc49c"), Formula(Equal(HurwitzZeta(s, a), Mul(Div(1, Pow(2, s)), Add(HurwitzZeta(s, Div(a, 2)), HurwitzZeta(s, Div(Add(a, 1), 2)))))), Variables(s, a), Assumptions(And(Element(s, CC), Element(a, CC), NotEqual(s, 1), Greater(Re(a), 0))))