Assumptions:
TeX:
\mathop{\operatorname{poles}\,}\limits_{s \in \mathbb{C} \cup \left\{{\tilde \infty}\right\}} L\!\left(s, \chi\right) = \begin{cases} \left\{1\right\}, & \chi = \chi_{q \, . \, 1}\\\left\{\right\}, & \text{otherwise}\\ \end{cases}
q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DirichletL | Dirichlet L-function | |
| CC | Complex numbers | |
| UnsignedInfinity | Unsigned infinity | |
| DirichletCharacter | Dirichlet character | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| DirichletGroup | Dirichlet characters with given modulus |
Source code for this entry:
Entry(ID("ea8c55"),
Formula(Equal(Poles(DirichletL(s, chi), ForElement(s, Union(CC, Set(UnsignedInfinity)))), Cases(Tuple(Set(1), Equal(chi, DirichletCharacter(q, 1))), Tuple(Set(), Otherwise)))),
Variables(q, chi),
Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)))))