Assumptions:
TeX:
w_{n,k} = \frac{2}{\left(1 - {\left(x_{n,k}\right)}^{2}\right) {\left(\left[ \frac{d}{d t}\, P_{n}\!\left(t\right) \right]_{t = x_{n,k}}\right)}^{2}} n \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, k \in \{1, 2, \ldots n\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
GaussLegendreWeight | Gauss-Legendre quadrature weight | |
Pow | Power | |
LegendrePolynomialZero | Legendre polynomial zero | |
Derivative | Derivative | |
LegendrePolynomial | Legendre polynomial | |
ZZGreaterEqual | Integers greater than or equal to n | |
ZZBetween | Integers between a and b inclusive |
Source code for this entry:
Entry(ID("ea4754"), Formula(Equal(GaussLegendreWeight(n, k), Div(2, Mul(Sub(1, Pow(LegendrePolynomialZero(n, k), 2)), Pow(Derivative(LegendrePolynomial(n, t), Tuple(t, LegendrePolynomialZero(n, k), 1)), 2))))), Variables(n, k), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(k, ZZBetween(1, n)))))