Assumptions:
TeX:
w_{n,k} = \frac{2}{\left(1 - {\left(x_{n,k}\right)}^{2}\right) {\left(P'_{n}(x_{n,k})\right)}^{2}}
n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; k \in \{1, 2, \ldots, n\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| GaussLegendreWeight | Gauss-Legendre quadrature weight | |
| Pow | Power | |
| LegendrePolynomialZero | Legendre polynomial zero | |
| ComplexDerivative | Complex derivative | |
| LegendrePolynomial | Legendre polynomial | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| Range | Integers between given endpoints |
Source code for this entry:
Entry(ID("ea4754"),
Formula(Equal(GaussLegendreWeight(n, k), Div(2, Mul(Sub(1, Pow(LegendrePolynomialZero(n, k), 2)), Pow(ComplexDerivative(LegendrePolynomial(n, t), For(t, LegendrePolynomialZero(n, k), 1)), 2))))),
Variables(n, k),
Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(k, Range(1, n)))))