Fungrim entry: ea1d58

$\operatorname{agm}\!\left(a, b\right) = b \operatorname{agm}\!\left(1, \frac{a}{b}\right)$
Assumptions:$a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \ne 0 \;\mathbin{\operatorname{and}}\; \frac{a}{b} \notin \left(-\infty, 0\right]$
TeX:
\operatorname{agm}\!\left(a, b\right) = b \operatorname{agm}\!\left(1, \frac{a}{b}\right)

a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \ne 0 \;\mathbin{\operatorname{and}}\; \frac{a}{b} \notin \left(-\infty, 0\right]
Definitions:
Fungrim symbol Notation Short description
AGM$\operatorname{agm}\!\left(a, b\right)$ Arithmetic-geometric mean
CC$\mathbb{C}$ Complex numbers
OpenClosedInterval$\left(a, b\right]$ Open-closed interval
Infinity$\infty$ Positive infinity
Source code for this entry:
Entry(ID("ea1d58"),
Formula(Equal(AGM(a, b), Mul(b, AGM(1, Div(a, b))))),
Variables(a, b),
Assumptions(And(Element(a, CC), Element(b, CC), NotEqual(b, 0), NotElement(Div(a, b), OpenClosedInterval(Neg(Infinity), 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC