Assumptions:
TeX:
\lambda(\tau) = 16 q \prod_{k=1}^{\infty} {\left(\frac{1 + {q}^{2 k}}{1 + {q}^{2 k - 1}}\right)}^{8}\; \text{ where } q = {e}^{\pi i \tau}
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ModularLambda | Modular lambda function | |
| Product | Product | |
| Pow | Power | |
| Infinity | Positive infinity | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("e96684"),
Formula(Equal(ModularLambda(tau), Where(Mul(Mul(16, q), Product(Pow(Div(Add(1, Pow(q, Mul(2, k))), Add(1, Pow(q, Sub(Mul(2, k), 1)))), 8), For(k, 1, Infinity))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))),
Variables(tau),
Assumptions(Element(tau, HH)))