Fungrim home page

Fungrim entry: e93ca8

Table of ζ ⁣(n)\zeta\!\left(n\right) to 50 digits for 2n502 \le n \le 50
nn ζ ⁣(n)\zeta\!\left(n\right)
21.6449340668482264364724151666460251892189499012068
31.2020569031595942853997381615114499907649862923405
41.0823232337111381915160036965411679027747509519187
51.0369277551433699263313654864570341680570809195019
61.0173430619844491397145179297909205279018174900329
71.0083492773819228268397975498497967595998635605652
81.0040773561979443393786852385086524652589607906499
91.0020083928260822144178527692324120604856058513949
101.0009945751278180853371459589003190170060195315645
111.0004941886041194645587022825264699364686064357582
121.0002460865533080482986379980477396709604160884580
131.0001227133475784891467518365263573957142751058955
141.0000612481350587048292585451051353337474816961692
151.0000305882363070204935517285106450625876279487069
161.0000152822594086518717325714876367220232373889905
171.0000076371976378997622736002935630292130882490903
181.0000038172932649998398564616446219397304546972190
191.0000019082127165539389256569577951013532585711448
201.0000009539620338727961131520386834493459437941874
211.0000004769329867878064631167196043730459664466948
221.0000002384505027277329900036481867529949350418218
231.0000001192199259653110730677887188823263872549978
241.0000000596081890512594796124402079358012275039188
251.0000000298035035146522801860637050693660118447309
261.0000000149015548283650412346585066306986288647882
271.0000000074507117898354294919810041706041194547190
281.0000000037253340247884570548192040184024232328931
291.0000000018626597235130490064039099454169480616653
301.0000000009313274324196681828717647350212198135680
311.0000000004656629065033784072989233251220071062692
321.0000000002328311833676505492001455975940495024830
331.0000000001164155017270051977592973835456309516522
341.0000000000582077208790270088924368598910630541731
351.0000000000291038504449709968692942522788404641070
361.0000000000145519218910419842359296322453184209838
371.0000000000072759598350574810145208690123380592649
381.0000000000036379795473786511902372363558732735126
391.0000000000018189896503070659475848321007300850306
401.0000000000009094947840263889282533118386949087539
411.0000000000004547473783042154026799112029488570339
421.0000000000002273736845824652515226821577978691214
431.0000000000001136868407680227849349104838025906437
441.0000000000000568434198762758560927718296752406855
451.0000000000000284217097688930185545507370494266207
461.0000000000000142108548280316067698343071417395377
471.0000000000000071054273952108527128773544799568000
481.0000000000000035527136913371136732984695340593430
491.0000000000000017763568435791203274733490144002796
501.0000000000000008881784210930815903096091386391386
Table data: (n,y)\left(n, y\right) such that NearestDecimal ⁣(ζ ⁣(n),50)=y\operatorname{NearestDecimal}\!\left(\zeta\!\left(n\right), 50\right) = y
Definitions:
Fungrim symbol Notation Short description
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
Source code for this entry:
Entry(ID("e93ca8"),
    Description("Table of", RiemannZeta(n), "to 50 digits for", LessEqual(2, n, 50)),
    Table(TableRelation(Tuple(n, y), Equal(NearestDecimal(RiemannZeta(n), 50), y)), TableHeadings(n, RiemannZeta(n)), TableSplit(1), List(Tuple(2, Decimal("1.6449340668482264364724151666460251892189499012068")), Tuple(3, Decimal("1.2020569031595942853997381615114499907649862923405")), Tuple(4, Decimal("1.0823232337111381915160036965411679027747509519187")), Tuple(5, Decimal("1.0369277551433699263313654864570341680570809195019")), Tuple(6, Decimal("1.0173430619844491397145179297909205279018174900329")), Tuple(7, Decimal("1.0083492773819228268397975498497967595998635605652")), Tuple(8, Decimal("1.0040773561979443393786852385086524652589607906499")), Tuple(9, Decimal("1.0020083928260822144178527692324120604856058513949")), Tuple(10, Decimal("1.0009945751278180853371459589003190170060195315645")), Tuple(11, Decimal("1.0004941886041194645587022825264699364686064357582")), Tuple(12, Decimal("1.0002460865533080482986379980477396709604160884580")), Tuple(13, Decimal("1.0001227133475784891467518365263573957142751058955")), Tuple(14, Decimal("1.0000612481350587048292585451051353337474816961692")), Tuple(15, Decimal("1.0000305882363070204935517285106450625876279487069")), Tuple(16, Decimal("1.0000152822594086518717325714876367220232373889905")), Tuple(17, Decimal("1.0000076371976378997622736002935630292130882490903")), Tuple(18, Decimal("1.0000038172932649998398564616446219397304546972190")), Tuple(19, Decimal("1.0000019082127165539389256569577951013532585711448")), Tuple(20, Decimal("1.0000009539620338727961131520386834493459437941874")), Tuple(21, Decimal("1.0000004769329867878064631167196043730459664466948")), Tuple(22, Decimal("1.0000002384505027277329900036481867529949350418218")), Tuple(23, Decimal("1.0000001192199259653110730677887188823263872549978")), Tuple(24, Decimal("1.0000000596081890512594796124402079358012275039188")), Tuple(25, Decimal("1.0000000298035035146522801860637050693660118447309")), Tuple(26, Decimal("1.0000000149015548283650412346585066306986288647882")), Tuple(27, Decimal("1.0000000074507117898354294919810041706041194547190")), Tuple(28, Decimal("1.0000000037253340247884570548192040184024232328931")), Tuple(29, Decimal("1.0000000018626597235130490064039099454169480616653")), Tuple(30, Decimal("1.0000000009313274324196681828717647350212198135680")), Tuple(31, Decimal("1.0000000004656629065033784072989233251220071062692")), Tuple(32, Decimal("1.0000000002328311833676505492001455975940495024830")), Tuple(33, Decimal("1.0000000001164155017270051977592973835456309516522")), Tuple(34, Decimal("1.0000000000582077208790270088924368598910630541731")), Tuple(35, Decimal("1.0000000000291038504449709968692942522788404641070")), Tuple(36, Decimal("1.0000000000145519218910419842359296322453184209838")), Tuple(37, Decimal("1.0000000000072759598350574810145208690123380592649")), Tuple(38, Decimal("1.0000000000036379795473786511902372363558732735126")), Tuple(39, Decimal("1.0000000000018189896503070659475848321007300850306")), Tuple(40, Decimal("1.0000000000009094947840263889282533118386949087539")), Tuple(41, Decimal("1.0000000000004547473783042154026799112029488570339")), Tuple(42, Decimal("1.0000000000002273736845824652515226821577978691214")), Tuple(43, Decimal("1.0000000000001136868407680227849349104838025906437")), Tuple(44, Decimal("1.0000000000000568434198762758560927718296752406855")), Tuple(45, Decimal("1.0000000000000284217097688930185545507370494266207")), Tuple(46, Decimal("1.0000000000000142108548280316067698343071417395377")), Tuple(47, Decimal("1.0000000000000071054273952108527128773544799568000")), Tuple(48, Decimal("1.0000000000000035527136913371136732984695340593430")), Tuple(49, Decimal("1.0000000000000017763568435791203274733490144002796")), Tuple(50, Decimal("1.0000000000000008881784210930815903096091386391386")))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC