Assumptions:
TeX:
\theta_{1}\!\left(z , -\frac{1}{\tau}\right) = -i \sqrt{\frac{\tau}{i}} {e}^{\pi i \tau {z}^{2}} \theta_{1}\!\left(\tau z , \tau\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
ConstI | Imaginary unit | |
Sqrt | Principal square root | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
Pow | Power | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("e8ce0b"), Formula(Equal(JacobiTheta(1, z, Div(-1, tau)), Mul(Mul(Mul(Neg(ConstI), Sqrt(Div(tau, ConstI))), Exp(Mul(Mul(Mul(Pi, ConstI), tau), Pow(z, 2)))), JacobiTheta(1, Mul(tau, z), tau)))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))