Assumptions:
TeX:
{z \choose k} = \frac{\Gamma\!\left(z + 1\right)}{\Gamma\!\left(k + 1\right) \Gamma\!\left(z - k + 1\right)} z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, k \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, z - k \notin \{-1, -2, \ldots\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Binomial | Binomial coefficient | |
GammaFunction | Gamma function | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("e87c43"), Formula(Equal(Binomial(z, k), Div(GammaFunction(Add(z, 1)), Mul(GammaFunction(Add(k, 1)), GammaFunction(Add(Sub(z, k), 1)))))), Variables(z, k), Assumptions(And(Element(z, CC), Element(k, ZZGreaterEqual(0)), NotElement(Sub(z, k), ZZLessEqual(-1)))))