Assumptions:
TeX:
{z \choose k} = \frac{\Gamma\!\left(z + 1\right)}{\Gamma\!\left(k + 1\right) \Gamma\!\left(z - k + 1\right)} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z - k \notin \{-1, -2, \ldots\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Binomial | Binomial coefficient | |
Gamma | Gamma function | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("e87c43"), Formula(Equal(Binomial(z, k), Div(Gamma(Add(z, 1)), Mul(Gamma(Add(k, 1)), Gamma(Add(Sub(z, k), 1)))))), Variables(z, k), Assumptions(And(Element(z, CC), Element(k, ZZGreaterEqual(0)), NotElement(Sub(z, k), ZZLessEqual(-1)))))