Assumptions:
References:
- L. Landau. Monotonicity and bounds on Bessel functions. Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory. Vol. 4. Southwest Texas State Univ. San Marcos, TX, 2000. http://emis.ams.org/journals/EJDE/conf-proc/04/l1/landau.pdf
TeX:
\left|J_{\nu}\!\left(x\right)\right| \le 0.6749 {\nu}^{-1 / 3} \nu \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; x \in \left[0, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
BesselJ | Bessel function of the first kind | |
Pow | Power | |
OpenInterval | Open interval | |
Infinity | Positive infinity | |
ClosedOpenInterval | Closed-open interval |
Source code for this entry:
Entry(ID("e7b5be"), Formula(LessEqual(Abs(BesselJ(nu, x)), Mul(Decimal("0.6749"), Pow(nu, Neg(Div(1, 3)))))), Variables(nu, x), Assumptions(And(Element(nu, OpenInterval(0, Infinity)), Element(x, ClosedOpenInterval(0, Infinity)))), References("L. Landau. Monotonicity and bounds on Bessel functions. Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory. Vol. 4. Southwest Texas State Univ. San Marcos, TX, 2000. http://emis.ams.org/journals/EJDE/conf-proc/04/l1/landau.pdf"))