Fungrim home page

Fungrim entry: e677fb

ddzζ ⁣(z,τ)= ⁣(z,τ)\frac{d}{d z}\, \zeta\!\left(z, \tau\right) = -\wp\!\left(z, \tau\right)
Assumptions:zCandτHandzΛ(1,τ)z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, z \notin \Lambda_{(1, \tau)}
TeX:
\frac{d}{d z}\, \zeta\!\left(z, \tau\right) = -\wp\!\left(z, \tau\right)

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, z \notin \Lambda_{(1, \tau)}
Definitions:
Fungrim symbol Notation Short description
Derivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Derivative
WeierstrassZetaζ ⁣(z,τ)\zeta\!\left(z, \tau\right) Weierstrass zeta function
WeierstrassP ⁣(z,τ)\wp\!\left(z, \tau\right) Weierstrass elliptic function
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
LatticeΛ(a,b)\Lambda_{(a, b)} Complex lattice with periods a, b
Source code for this entry:
Entry(ID("e677fb"),
    Formula(Equal(Derivative(WeierstrassZeta(z, tau), Tuple(z, z, 1)), Neg(WeierstrassP(z, tau)))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH), NotElement(z, Lattice(1, tau)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC