Assumptions:
TeX:
\frac{d}{d z}\, \zeta\!\left(z, \tau\right) = -\wp\!\left(z, \tau\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; z \notin \Lambda_{(1, \tau)}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
WeierstrassZeta | Weierstrass zeta function | |
WeierstrassP | Weierstrass elliptic function | |
CC | Complex numbers | |
HH | Upper complex half-plane | |
Lattice | Complex lattice with periods a, b |
Source code for this entry:
Entry(ID("e677fb"), Formula(Equal(ComplexDerivative(WeierstrassZeta(z, tau), For(z, z, 1)), Neg(WeierstrassP(z, tau)))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH), NotElement(z, Lattice(1, tau)))))