Assumptions:
TeX:
R_F\!\left(0, x, -x\right) = \frac{1}{\sqrt{x}} \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{4 \sqrt{2 \pi}} \begin{cases} 1 - i, & \operatorname{Im}(x) < 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Im}(x) = 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0\right)\\1 + i, & \text{otherwise}\\ \end{cases}
x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRF | Carlson symmetric elliptic integral of the first kind | |
| Sqrt | Principal square root | |
| Pow | Power | |
| Gamma | Gamma function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| Im | Imaginary part | |
| Re | Real part | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("e54e61"),
Formula(Mul(Mul(Equal(CarlsonRF(0, x, Neg(x)), Div(1, Sqrt(x))), Div(Pow(Gamma(Div(1, 4)), 2), Mul(4, Sqrt(Mul(2, Pi))))), Cases(Tuple(Sub(1, ConstI), Or(Less(Im(x), 0), And(Equal(Im(x), 0), GreaterEqual(Re(x), 0)))), Tuple(Add(1, ConstI), Otherwise)))),
Variables(x),
Assumptions(Element(x, CC)))