Assumptions:
TeX:
\theta_{3}\!\left(0 , \tau\right) = 1 + 2 \sum_{n=1}^{\infty} \frac{\lambda(n) {q}^{n}}{1 - {q}^{n}}\; \text{ where } q = {e}^{\pi i \tau} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Sum | Sum | |
LiouvilleLambda | Liouville function | |
Pow | Power | |
Infinity | Positive infinity | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("e4e707"), Formula(Equal(JacobiTheta(3, 0, tau), Where(Add(1, Mul(2, Sum(Div(Mul(LiouvilleLambda(n), Pow(q, n)), Sub(1, Pow(q, n))), For(n, 1, Infinity)))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))), Variables(tau), Assumptions(Element(tau, HH)))