Assumptions:
TeX:
\mathop{\operatorname{zeros}\,}\limits_{\tau \in \mathbb{H}} E_{2 k}\!\left(\tau\right) = \left\{ \gamma \circ \tau : \tau \in \mathop{\operatorname{zeros}\,}\limits_{z \in \mathcal{F}} E_{2 k}\!\left(z\right) \;\mathbin{\operatorname{and}}\; \gamma \in \operatorname{PSL}_2(\mathbb{Z}) \right\}
k \in \mathbb{Z}_{\ge 2}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Zeros | Zeros (roots) of function | |
| EisensteinE | Normalized Eisenstein series | |
| HH | Upper complex half-plane | |
| ModularGroupAction | Action of modular group | |
| ModularGroupFundamentalDomain | Fundamental domain for action of the modular group | |
| PSL2Z | Modular group (canonical representatives) | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("e46697"),
Formula(Equal(Zeros(EisensteinE(Mul(2, k), tau), ForElement(tau, HH)), Set(ModularGroupAction(gamma, tau), For(Tuple(gamma, tau)), And(Element(tau, Zeros(EisensteinE(Mul(2, k), z), ForElement(z, ModularGroupFundamentalDomain))), Element(gamma, PSL2Z))))),
Variables(k),
Assumptions(And(Element(k, ZZGreaterEqual(2)))))