Assumptions:
TeX:
B_{n,\chi} = \sum_{a=1}^{q} \chi(a) \sum_{k=0}^{n} {n \choose k} B_{k} {a}^{n - k} {q}^{k - 1} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
GeneralizedBernoulliB | Generalized Bernoulli number | |
Sum | Sum | |
Binomial | Binomial coefficient | |
BernoulliB | Bernoulli number | |
Pow | Power | |
ZZGreaterEqual | Integers greater than or equal to n | |
DirichletGroup | Dirichlet characters with given modulus |
Source code for this entry:
Entry(ID("e44796"), Formula(Equal(GeneralizedBernoulliB(n, chi), Sum(Mul(chi(a), Sum(Mul(Mul(Mul(Binomial(n, k), BernoulliB(k)), Pow(a, Sub(n, k))), Pow(q, Sub(k, 1))), For(k, 0, n))), For(a, 1, q)))), Variables(q, chi, n), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(n, ZZGreaterEqual(0)))))