Assumptions:
TeX:
\sin\!\left(n z\right) = \sum_{k=0}^{\left\lfloor \left( n - 1 \right) / 2 \right\rfloor} {\left(-1\right)}^{k} {n \choose 2 k + 1} \cos^{n - 2 k - 1}\!\left(z\right) \sin^{2 k + 1}\!\left(z\right)
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sin | Sine | |
| Sum | Sum | |
| Pow | Power | |
| Binomial | Binomial coefficient | |
| Cos | Cosine | |
| CC | Complex numbers | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("e3f8a4"),
Formula(Equal(Sin(Mul(n, z)), Sum(Mul(Mul(Mul(Pow(-1, k), Binomial(n, Add(Mul(2, k), 1))), Pow(Cos(z), Sub(Sub(n, Mul(2, k)), 1))), Pow(Sin(z), Add(Mul(2, k), 1))), For(k, 0, Floor(Div(Sub(n, 1), 2)))))),
Variables(n, z),
Assumptions(And(Element(z, CC), Element(n, ZZGreaterEqual(0)))))