Assumptions:
TeX:
\int_{-1}^{1} P_{n}\!\left(x\right) P_{m}\!\left(x\right) \, dx = \frac{2}{2 n + 1} \delta_{(n,m)}
n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Integral | Integral | |
| LegendrePolynomial | Legendre polynomial | |
| KroneckerDelta | Kronecker delta | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("e36542"),
Formula(Equal(Integral(Mul(LegendrePolynomial(n, x), LegendrePolynomial(m, x)), For(x, -1, 1)), Mul(Div(2, Add(Mul(2, n), 1)), KroneckerDelta(n, m)))),
Variables(n, m),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))