Fungrim home page

Fungrim entry: e30d7e

RF ⁣(0,1,12216)=(2+2)(Γ ⁣(14))216πR_F\!\left(0, 1, 12 \sqrt{2} - 16\right) = \frac{\left(2 + \sqrt{2}\right) {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{16 \sqrt{\pi}}
TeX:
R_F\!\left(0, 1, 12 \sqrt{2} - 16\right) = \frac{\left(2 + \sqrt{2}\right) {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{16 \sqrt{\pi}}
Definitions:
Fungrim symbol Notation Short description
CarlsonRFRF ⁣(x,y,z)R_F\!\left(x, y, z\right) Carlson symmetric elliptic integral of the first kind
Sqrtz\sqrt{z} Principal square root
Powab{a}^{b} Power
GammaΓ(z)\Gamma(z) Gamma function
Piπ\pi The constant pi (3.14...)
Source code for this entry:
Entry(ID("e30d7e"),
    Formula(Equal(CarlsonRF(0, 1, Sub(Mul(12, Sqrt(2)), 16)), Div(Mul(Add(2, Sqrt(2)), Pow(Gamma(Div(1, 4)), 2)), Mul(16, Sqrt(Pi))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC