Fungrim home page

Fungrim entry: e284d7

Iν(r) ⁣(z)=12rk=0r(rk)Iν+2kr ⁣(z)I^{(r)}_{\nu}\!\left(z\right) = \frac{1}{{2}^{r}} \sum_{k=0}^{r} {r \choose k} I_{\nu + 2 k - r}\!\left(z\right)
Assumptions:νZandzCandrZ0\nu \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, r \in \mathbb{Z}_{\ge 0}
Alternative assumptions:νCandzC{0}andrZ0\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, r \in \mathbb{Z}_{\ge 0}
TeX:
I^{(r)}_{\nu}\!\left(z\right) = \frac{1}{{2}^{r}} \sum_{k=0}^{r} {r \choose k} I_{\nu + 2 k - r}\!\left(z\right)

\nu \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, r \in \mathbb{Z}_{\ge 0}

\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, r \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol Notation Short description
BesselIDerivativeIν(r) ⁣(z)I^{(r)}_{\nu}\!\left(z\right) Differentiated modified Bessel function of the first kind
Powab{a}^{b} Power
Binomial(nk){n \choose k} Binomial coefficient
BesselIIν ⁣(z)I_{\nu}\!\left(z\right) Modified Bessel function of the first kind
ZZZ\mathbb{Z} Integers
CCC\mathbb{C} Complex numbers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("e284d7"),
    Formula(Equal(BesselIDerivative(nu, z, r), Mul(Div(1, Pow(2, r)), Sum(Mul(Binomial(r, k), BesselI(Sub(Add(nu, Mul(2, k)), r), z)), Tuple(k, 0, r))))),
    Variables(nu, z, r),
    Assumptions(And(Element(nu, ZZ), Element(z, CC), Element(r, ZZGreaterEqual(0))), And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))), Element(r, ZZGreaterEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC