Assumptions:
TeX:
\theta_{2}\!\left(0 , 1 + y i\right) = \frac{1 + i}{\sqrt{2 y}} \theta_{3}\!\left(0 , 1 + \frac{i}{y}\right) y \in \left(0, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
ConstI | Imaginary unit | |
Sqrt | Principal square root | |
OpenInterval | Open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("e2288d"), Formula(Equal(JacobiTheta(2, 0, Add(1, Mul(y, ConstI))), Mul(Div(Add(1, ConstI), Sqrt(Mul(2, y))), JacobiTheta(3, 0, Add(1, Div(ConstI, y)))))), Variables(y), Assumptions(Element(y, OpenInterval(0, Infinity))))