Assumptions:
TeX:
\psi\!\left(z\right) = \int_{0}^{\infty} \left({e}^{-t} - \frac{1}{{\left(1 + t\right)}^{z}}\right) \frac{1}{t} \, dt
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DigammaFunction | Digamma function | |
| Integral | Integral | |
| Exp | Exponential function | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("e1e71f"),
Formula(Equal(DigammaFunction(z), Integral(Mul(Parentheses(Sub(Exp(Neg(t)), Div(1, Pow(Add(1, t), z)))), Div(1, t)), For(t, 0, Infinity)))),
Variables(z),
Assumptions(And(Element(z, CC), Greater(Re(z), 0))))