Assumptions:
TeX:
\psi\!\left(z\right) = \int_{0}^{\infty} \left({e}^{-t} - \frac{1}{{\left(1 + t\right)}^{z}}\right) \frac{1}{t} \, dt z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DigammaFunction | Digamma function | |
Integral | Integral | |
Exp | Exponential function | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("e1e71f"), Formula(Equal(DigammaFunction(z), Integral(Mul(Parentheses(Sub(Exp(Neg(t)), Div(1, Pow(Add(1, t), z)))), Div(1, t)), For(t, 0, Infinity)))), Variables(z), Assumptions(And(Element(z, CC), Greater(Re(z), 0))))