Assumptions:
TeX:
R_J\!\left(0, 0, z, w\right) = \begin{cases} \operatorname{sgn}\!\left(\frac{1}{\sqrt{z} w}\right) \infty, & z \ne 0 \;\mathbin{\operatorname{and}}\; w \ne 0\\{\tilde \infty}, & \text{otherwise}\\ \end{cases}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; w \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRJ | Carlson symmetric elliptic integral of the third kind | |
| Sign | Sign function | |
| Sqrt | Principal square root | |
| Infinity | Positive infinity | |
| UnsignedInfinity | Unsigned infinity | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("e1a3cb"),
Formula(Equal(CarlsonRJ(0, 0, z, w), Cases(Tuple(Mul(Sign(Div(1, Mul(Sqrt(z), w))), Infinity), And(NotEqual(z, 0), NotEqual(w, 0))), Tuple(UnsignedInfinity, Otherwise)))),
Variables(z, w),
Assumptions(And(Element(z, CC), Element(w, CC))))