Fungrim home page

Fungrim entry: e15f43

K(m)=π2agm ⁣(1,1m)K(m) = \frac{\pi}{2 \operatorname{agm}\!\left(1, \sqrt{1 - m}\right)}
Assumptions:mCm \in \mathbb{C}
TeX:
K(m) = \frac{\pi}{2 \operatorname{agm}\!\left(1, \sqrt{1 - m}\right)}

m \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
EllipticKK(m)K(m) Legendre complete elliptic integral of the first kind
Piπ\pi The constant pi (3.14...)
AGMagm ⁣(a,b)\operatorname{agm}\!\left(a, b\right) Arithmetic-geometric mean
Sqrtz\sqrt{z} Principal square root
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("e15f43"),
    Formula(Equal(EllipticK(m), Div(Pi, Mul(2, AGM(1, Sqrt(Sub(1, m))))))),
    Variables(m),
    Assumptions(Element(m, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC