Assumptions:
References:
- B. C. Carlson (1977), Special functions of applied mathematics, Academic Press. Inequality 3.10-4.
TeX:
\left|\Gamma\!\left(x + y i\right)\right| \ge \frac{\Gamma(x)}{\sqrt{\cosh\!\left(\pi y\right)}} x \in \left[\frac{1}{2}, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{R}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
Gamma | Gamma function | |
ConstI | Imaginary unit | |
Sqrt | Principal square root | |
Pi | The constant pi (3.14...) | |
ClosedOpenInterval | Closed-open interval | |
Infinity | Positive infinity | |
RR | Real numbers |
Source code for this entry:
Entry(ID("e0b322"), Formula(GreaterEqual(Abs(Gamma(Add(x, Mul(y, ConstI)))), Div(Gamma(x), Sqrt(Cosh(Mul(Pi, y)))))), Variables(x, y), Assumptions(And(Element(x, ClosedOpenInterval(Div(1, 2), Infinity)), Element(y, RR))), References("B. C. Carlson (1977), Special functions of applied mathematics, Academic Press. Inequality 3.10-4."))