Assumptions:
TeX:
\log G(z) = \left(z - 1\right) \log \Gamma(z) - \zeta'\!\left(-1, z\right) + \zeta'(-1)
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LogBarnesG | Logarithmic Barnes G-function | |
| LogGamma | Logarithmic gamma function | |
| HurwitzZeta | Hurwitz zeta function | |
| ComplexDerivative | Complex derivative | |
| RiemannZeta | Riemann zeta function | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("e05807"),
Formula(Equal(LogBarnesG(z), Add(Sub(Mul(Sub(z, 1), LogGamma(z)), HurwitzZeta(-1, z, 1)), ComplexDerivative(RiemannZeta(s), For(s, -1))))),
Variables(z),
Assumptions(And(Element(z, CC), NotElement(z, ZZLessEqual(0)))))