Assumptions:
TeX:
\log G(z) = \left(z - 1\right) \log \Gamma(z) - \zeta'\!\left(-1, z\right) + \zeta'(-1) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LogBarnesG | Logarithmic Barnes G-function | |
LogGamma | Logarithmic gamma function | |
HurwitzZeta | Hurwitz zeta function | |
ComplexDerivative | Complex derivative | |
RiemannZeta | Riemann zeta function | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("e05807"), Formula(Equal(LogBarnesG(z), Add(Sub(Mul(Sub(z, 1), LogGamma(z)), HurwitzZeta(-1, z, 1)), ComplexDerivative(RiemannZeta(s), For(s, -1))))), Variables(z), Assumptions(And(Element(z, CC), NotElement(z, ZZLessEqual(0)))))