Assumptions:
TeX:
\frac{1}{\pi} \frac{\theta'_{1}\!\left(z , \tau\right)}{\theta_{1}\!\left(z , \tau\right)} = \cot\!\left(\pi z\right) + 4 \sum_{n=1}^{\infty} \frac{{q}^{2 n}}{1 - {q}^{2 n}} \sin\!\left(2 \pi n z\right)\; \text{ where } q = {e}^{\pi i \tau} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \left|\operatorname{Im}(z)\right| < \left|\operatorname{Im}(\tau)\right| \;\mathbin{\operatorname{and}}\; \sin\!\left(\pi z\right) \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pi | The constant pi (3.14...) | |
JacobiTheta | Jacobi theta function | |
Sum | Sum | |
Pow | Power | |
Sin | Sine | |
Infinity | Positive infinity | |
Exp | Exponential function | |
ConstI | Imaginary unit | |
CC | Complex numbers | |
HH | Upper complex half-plane | |
Abs | Absolute value | |
Im | Imaginary part |
Source code for this entry:
Entry(ID("dfbddd"), Formula(Equal(Mul(Div(1, Pi), Div(JacobiTheta(1, z, tau, 1), JacobiTheta(1, z, tau))), Where(Add(Cot(Mul(Pi, z)), Mul(4, Sum(Mul(Div(Pow(q, Mul(2, n)), Sub(1, Pow(q, Mul(2, n)))), Sin(Mul(Mul(Mul(2, Pi), n), z))), For(n, 1, Infinity)))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH), Less(Abs(Im(z)), Abs(Im(tau))), NotEqual(Sin(Mul(Pi, z)), 0))))