The exponential function
is a function of one complex variable . It can be defined by the Taylor series 1635f5.
In rendered formulas, Exp(z) is shown as
or as
depending on the typographical requirements; no semantic difference is implied.
The following table lists all conditions such that Exp(z) is defined in Fungrim.
|
Table data:
such that
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Exp | Exponential function | |
RR | Real numbers | |
OpenInterval | Open interval | |
Infinity | Positive infinity | |
CC | Complex numbers | |
FormalPowerSeries | Formal power series | |
Rational numbers |
Source code for this entry:
Entry(ID("dfbcd9"), SymbolDefinition(Exp, Exp(z), "Exponential function"), Description("The exponential function", Exp(z), "is a function of one complex variable", z, ".", "It can be defined by the Taylor series", EntryReference("1635f5"), "."), Description("In rendered formulas,", SourceForm(Exp(z)), "is shown as", Exp(z), "or as", Call(Exp, z), "depending on the typographical requirements; no semantic difference is implied."), Description("The following table lists all conditions such that", SourceForm(Exp(z)), "is defined in Fungrim."), Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(TableSection("Numbers"), Tuple(Element(z, Set(0)), Element(Exp(z), Set(1))), Tuple(Element(z, RR), Element(Exp(z), OpenInterval(0, Infinity))), Tuple(Element(z, CC), Element(Exp(z), SetMinus(CC, Set(0)))), TableSection("Infinities"), Tuple(Element(z, Set(Infinity)), Element(Exp(z), Set(Infinity))), Tuple(Element(z, Set(Neg(Infinity))), Element(Exp(z), Set(0))), TableSection("Formal power series"), Tuple(And(Element(z, FormalPowerSeries(QQ, x)), Equal(SeriesCoefficient(z, x, 0), 0)), And(Element(Exp(z), FormalPowerSeries(QQ, x)), Equal(SeriesCoefficient(Exp(z), x, 0), 1))), Tuple(Element(z, FormalPowerSeries(RR, x)), And(Element(Exp(z), FormalPowerSeries(RR, x)), Unequal(SeriesCoefficient(Exp(z), x, 0), 0))), Tuple(Element(z, FormalPowerSeries(CC, x)), And(Element(Exp(z), FormalPowerSeries(CC, x)), Unequal(SeriesCoefficient(Exp(z), x, 0), 0))))))