Assumptions:
TeX:
\psi^{(m)}\!\left(z\right) = {\left(-1\right)}^{m + 1} m ! \sum_{n=0}^{\infty} \frac{1}{{\left(n + z\right)}^{m + 1}}
m \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DigammaFunction | Digamma function | |
| Pow | Power | |
| Factorial | Factorial | |
| Sum | Sum | |
| Infinity | Positive infinity | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("dfb55b"),
Formula(Equal(DigammaFunction(z, m), Mul(Mul(Pow(-1, Add(m, 1)), Factorial(m)), Sum(Div(1, Pow(Add(n, z), Add(m, 1))), For(n, 0, Infinity))))),
Variables(m, z),
Assumptions(And(Element(m, ZZGreaterEqual(1)), Element(z, CC), NotElement(z, ZZLessEqual(0)))))