Assumptions:
References:
- http://functions.wolfram.com/EllipticFunctions/DedekindEta/13/01/0001/
TeX:
\eta^{2}\!\left(\tau\right) \left(33 {\left(\eta''(\tau)\right)}^{2} + \eta(\tau) {\eta}^{(4)}(\tau)\right) - 18 {\left(\eta'(\tau)\right)}^{4} + 12 \eta(\tau) \eta''(\tau) {\left(\eta'(\tau)\right)}^{2} - 28 \eta^{2}\!\left(\tau\right) \eta'''(\tau) \eta'(\tau) = 0 \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
DedekindEta | Dedekind eta function | |
ComplexDerivative | Complex derivative | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("df5f38"), Formula(Equal(Sub(Add(Sub(Mul(Pow(DedekindEta(tau), 2), Add(Mul(33, Pow(ComplexDerivative(DedekindEta(tau), For(tau, tau, 2)), 2)), Mul(DedekindEta(tau), ComplexDerivative(DedekindEta(tau), For(tau, tau, 4))))), Mul(18, Pow(ComplexDerivative(DedekindEta(tau), For(tau, tau)), 4))), Mul(Mul(Mul(12, DedekindEta(tau)), ComplexDerivative(DedekindEta(tau), For(tau, tau, 2))), Pow(ComplexDerivative(DedekindEta(tau), For(tau, tau)), 2))), Mul(Mul(Mul(28, Pow(DedekindEta(tau), 2)), ComplexDerivative(DedekindEta(tau), For(tau, tau, 3))), ComplexDerivative(DedekindEta(tau), For(tau, tau)))), 0)), Variables(tau), Assumptions(Element(tau, HH)), References("http://functions.wolfram.com/EllipticFunctions/DedekindEta/13/01/0001/"))