Assumptions:
TeX:
\operatorname{Re}\!\left(\operatorname{atan}\!\left(x + y i\right)\right) = \frac{1}{2} \operatorname{atan2}\!\left(2 x, 1 - {x}^{2} - {y}^{2}\right) x \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R} \,\mathbin{\operatorname{and}}\, \operatorname{not} \left(x = 0 \,\mathbin{\operatorname{and}}\, y \in \left(-\infty, -1\right] \cup \left\{1\right\}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Re | Real part | |
Atan | Inverse tangent | |
ConstI | Imaginary unit | |
Atan2 | Two-argument inverse tangent | |
Pow | Power | |
RR | Real numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("df52fc"), Formula(Equal(Re(Atan(Add(x, Mul(y, ConstI)))), Mul(Div(1, 2), Atan2(Mul(2, x), Sub(Sub(1, Pow(x, 2)), Pow(y, 2)))))), Variables(x, y), Assumptions(And(Element(x, RR), Element(y, RR), Not(And(Equal(x, 0), Element(y, Union(OpenClosedInterval(Neg(Infinity), -1), Set(1))))))))