Assumptions:
TeX:
\operatorname{Re}\!\left(\operatorname{atan}\!\left(x + y i\right)\right) = \frac{1}{2} \operatorname{atan2}\!\left(2 x, 1 - {x}^{2} - {y}^{2}\right)
x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; y \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \operatorname{not} \left(x = 0 \;\mathbin{\operatorname{and}}\; y \in \left(-\infty, -1\right] \cup \left\{1\right\}\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Re | Real part | |
| Atan | Inverse tangent | |
| ConstI | Imaginary unit | |
| Atan2 | Two-argument inverse tangent | |
| Pow | Power | |
| RR | Real numbers | |
| OpenClosedInterval | Open-closed interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("df52fc"),
Formula(Equal(Re(Atan(Add(x, Mul(y, ConstI)))), Mul(Div(1, 2), Atan2(Mul(2, x), Sub(Sub(1, Pow(x, 2)), Pow(y, 2)))))),
Variables(x, y),
Assumptions(And(Element(x, RR), Element(y, RR), Not(And(Equal(x, 0), Element(y, Union(OpenClosedInterval(Neg(Infinity), -1), Set(1))))))))