Assumptions:
TeX:
\,{}_1F_1\!\left(-n, b, z\right) = \sum_{k=0}^{n} \frac{\left(-n\right)_{k}}{\left(b\right)_{k}} \frac{{z}^{k}}{k !} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{not} \left(b \in \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; b > -n\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Hypergeometric1F1 | Kummer confluent hypergeometric function | |
Sum | Sum | |
RisingFactorial | Rising factorial | |
Pow | Power | |
Factorial | Factorial | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("dec042"), Formula(Equal(Hypergeometric1F1(Neg(n), b, z), Sum(Mul(Div(RisingFactorial(Neg(n), k), RisingFactorial(b, k)), Div(Pow(z, k), Factorial(k))), For(k, 0, n)))), Variables(n, b, z), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(b, CC), Not(And(Element(b, ZZLessEqual(0)), Greater(b, Neg(n)))), Element(z, CC))))