Fungrim home page

Fungrim entry: de9800

Ai ⁣(z)Bi ⁣(z)Ai ⁣(z)Bi ⁣(z)=1π\operatorname{Ai}\!\left(z\right) \operatorname{Bi}'\!\left(z\right) - \operatorname{Ai}'\!\left(z\right) \operatorname{Bi}\!\left(z\right) = \frac{1}{\pi}
zCz \in \mathbb{C}
TeX:
\operatorname{Ai}\!\left(z\right) \operatorname{Bi}'\!\left(z\right) - \operatorname{Ai}'\!\left(z\right) \operatorname{Bi}\!\left(z\right) = \frac{1}{\pi}
Definitions:
Fungrim symbol Notation Short description
AiryAiAi ⁣(z)\operatorname{Ai}\!\left(z\right) Airy function of the first kind
AiryBiBi ⁣(z)\operatorname{Bi}\!\left(z\right) Airy function of the second kind
Piπ\pi The constant pi (3.14...)
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("de9800"),
    Formula(Equal(Sub(Mul(AiryAi(z), AiryBi(z, 1)), Mul(AiryAi(z, 1), AiryBi(z))), Div(1, Pi))),
    Variables(z),
    Element(z, CC))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC