Assumptions:
TeX:
\theta_{3}^{2}\!\left(0, \frac{\tau}{2}\right) = \theta_{2}^{2}\!\left(0, \tau\right) + \theta_{3}^{2}\!\left(0, \tau\right)
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("de7918"),
Formula(Equal(Pow(JacobiTheta(3, 0, Div(tau, 2)), 2), Add(Pow(JacobiTheta(2, 0, tau), 2), Pow(JacobiTheta(3, 0, tau), 2)))),
Variables(tau),
Assumptions(Element(tau, HH)))