Assumptions:
TeX:
H_{D}\!\left(x\right) = \prod_{\left(a, b, c\right) \in \mathcal{Q}^{*}_{D}} \left(x - j\!\left(\frac{-b + \sqrt{D}}{2 a}\right)\right)
D \in \{-3, -4, \ldots\} \;\mathbin{\operatorname{and}}\; -D \bmod 4 \in \left\{0, 3\right\} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| HilbertClassPolynomial | Hilbert class polynomial | |
| Product | Product | |
| ModularJ | Modular j-invariant | |
| Sqrt | Principal square root | |
| PrimitiveReducedPositiveIntegralBinaryQuadraticForms | Primitive reduced positive integral binary quadratic forms | |
| ZZLessEqual | Integers less than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("dd5681"),
Formula(Equal(HilbertClassPolynomial(D, x), Product(Parentheses(Sub(x, ModularJ(Div(Add(Neg(b), Sqrt(D)), Mul(2, a))))), ForElement(Tuple(a, b, c), PrimitiveReducedPositiveIntegralBinaryQuadraticForms(D))))),
Variables(D, x),
Assumptions(And(Element(D, ZZLessEqual(-3)), Element(Mod(Neg(D), 4), Set(0, 3)), Element(x, CC))))